资源类型

期刊论文 73

年份

2023 6

2022 12

2021 11

2020 5

2019 3

2017 3

2016 1

2015 1

2014 2

2012 3

2011 1

2010 3

2009 6

2008 3

2007 2

2006 3

2005 1

2003 1

2001 3

展开 ︾

关键词

细胞迁移 2

3D支架平台 1

BNLAS 1

FRP 聚合物 1

IEEE80216 1

MCDB 1

Mesh 1

YAG激光淬火 1

中间桥塔 1

乳腺癌 1

仿真 1

传递函数 1

低刚度 1

修正路由 1

光刻机 1

刚性 1

初始刚度 1

动刚度 1

动态性能 1

展开 ︾

检索范围:

排序: 展示方式:

Mesh relationship modeling and dynamic characteristic analysis of external spur gears with gear wear

《机械工程前沿(英文)》 2022年 第17卷 第1期   页码 9-9 doi: 10.1007/s11465-021-0665-z

摘要: Gear wear is one of the most common gear failures, which changes the mesh relationship of normal gear. A new mesh relationship caused by gear wear affects meshing excitations, such as mesh stiffness and transmission error, and further increases vibration and noise level. This paper aims to establish the model of mesh relationship and reveal the vibration characteristics of external spur gears with gear wear. A geometric model for a new mesh relationship with gear wear is proposed, which is utilized to evaluate the influence of gear wear on mesh stiffness and unloaded static transmission error (USTE). Based on the mesh stiffness and USTE considering gear wear, a gear dynamic model is established, and the vibration characteristics of gear wear are numerically studied. Comparison with the experimental results verifies the proposed dynamic model based on the new mesh relationship. The numerical and experimental results indicate that gear wear does not change the structure of the spectrum, but it alters the amplitude of the meshing frequencies and their sidebands. Several condition indicators, such as root-mean-square, kurtosis, and first-order meshing frequency amplitude, can be regarded as important bases for judging gear wear state.

关键词: gear wear     mesh relationship     mesh stiffness     transmission error     vibration characteristics    

Mechanical design and analysis of a novel variable stiffness actuator with symmetrical pivot adjustment

《机械工程前沿(英文)》 2021年 第16卷 第4期   页码 711-725 doi: 10.1007/s11465-021-0647-1

摘要: The safety of human–robot interaction is an essential requirement for designing collaborative robotics. Thus, this paper aims to design a novel variable stiffness actuator (VSA) that can provide safer physical human–robot interaction for collaborative robotics. VSA follows the idea of modular design, mainly including a variable stiffness module and a drive module. The variable stiffness module transmits the motion from the drive module in a roundabout manner, making the modularization of VSA possible. As the key component of the variable stiffness module, a stiffness adjustment mechanism with a symmetrical structure is applied to change the positions of a pair of pivots in two levers linearly and simultaneously, which can eliminate the additional bending moment caused by the asymmetric structure. The design of the double-deck grooves in the lever allows the pivot to move freely in the groove, avoiding the geometric constraint between the parts. Consequently, the VSA stiffness can change from zero to infinity as the pivot moves from one end of the groove to the other. To facilitate building a manipulator in the future, an expandable electrical system with a distributed structure is also proposed. Stiffness calibration and control experiments are performed to evaluate the physical performance of the designed VSA. Experiment results show that the VSA stiffness is close to the theoretical design stiffness. Furthermore, the VSA with a proportional–derivative feedback plus feedforward controller exhibits a fast response for stiffness regulation and a good performance for position tracking.

关键词: variable stiffness actuator     variable stiffness module     drive module     symmetrical structure     double-deck grooves     expandable electrical system    

基于多跳双向认证的802.16Mesh网络SA管理机制

王兴建,胡爱群,黄玉划

《中国工程科学》 2006年 第8卷 第9期   页码 69-73

摘要:

IEEE802.16-2004无线城域网(wireless-MAN)标准支持的多跳(Mesh)网络是一种树状网络和adhoc网络结合的新型网络。针对Mesh中使用的单跳单向认证SA(安全关联)管理机制安全和效率上的缺陷,提出了一种和次优修正路由结合的多跳双向认证SA管理机制。

关键词: IEEE80216     Mesh     节点     多跳双向认证     修正路由    

Numerical studies of dynamic behavior of liquid film on single-layer wire mesh with different wettabilities

《化学科学与工程前沿(英文)》   页码 1672-1680 doi: 10.1007/s11705-022-2205-8

摘要: Droplet impacting on the stainless steel wire mesh is very common in chemical devices, like a rotating packed bed. Surface wettability of wire mesh significantly affects the liquid flow pattern and liquid dispersion performance. However, the effect of surface wettability on the impaction phenomena at microscale such as liquid film is still unknown. In this work, the dynamic behavior of liquid film on the surface of wire mesh was analyzed by computational fluid dynamics simulation. The dynamic behavior of liquid film on the surface of wire mesh can be divided into the following three steps: (1) spreading step; (2) shrinkage process; (3) stabilizing or disappearing step. Effects of surface wettability, as well as operating conditions, on wetting area and liquid film thickness were studied. Compared to the hydrophilic wire mesh, the final wetting area of hydrophobic wire mesh is zero in most cases. The average liquid film thickness on the surface of hydrophilic wire mesh is 30.02–77.29 μm, and that of hydrophobic wire mesh is 41.76–237.37 μm. This work provided a basic understanding of liquid film flow at microscale on the surface with various surface wettabilities, which can be guiding the packing optimization and design.

关键词: stainless steel wire mesh     computational fluid dynamics     surface wettability     liquid film     impacting    

Fabrication of a superhydrophilic/underwater superoleophobic stainless steel mesh for oil/water separation

《化学科学与工程前沿(英文)》 2023年 第17卷 第1期   页码 46-55 doi: 10.1007/s11705-022-2170-2

摘要: Because of the increasing amount of oily wastewater produced each day, it is important to develop superhydrophilic/underwater superoleophobic oil/water separation membranes with ultrahigh flux and high separation efficiency. In this paper, a superhydrophilic/underwater superoleophobic N-isopropylacrylamide-coated stainless steel mesh was prepared through a simple and convenient graft polymerization approach. The obtained mesh was able to separate oil/water mixtures only by gravity. In addition, the mesh showed high-efficiency separation ability (99.2%) and ultrahigh flux (235239 L∙m–2∙h–1). Importantly, due to the complex cross-linked bilayer structure, the prepared mesh exhibited good recycling performance and chemical stability in highly saline, alkaline and acidic environments.

关键词: oil/water separation     N-isopropylacrylamide     stainless steel mesh     ultrahigh flux    

Reliability mesh convergence analysis by introducing expanded control variates

Alireza GHAVIDEL, Mohsen RASHKI, Hamed GHOHANI ARAB, Mehdi AZHDARY MOGHADDAM

《结构与土木工程前沿(英文)》 2020年 第14卷 第4期   页码 1012-1023 doi: 10.1007/s11709-020-0631-6

摘要: The safety evaluation of engineering systems whose performance evaluation requires finite element analysis is a challenge in reliability theory. Recently, Adjusted Control Variates Technique (ACVAT) has proposed by the authors to solve this issue. ACVAT uses the results of a finite element method (FEM) model with coarse mesh density as the control variates of the model with fine mesh and efficiently solves FEM-based reliability problems. ACVAT however does not provide any results about the reliability-based mesh convergence of the problem, which is an important tool in FEM. Mesh-refinement analysis allows checking whether the numerical solution is sufficiently accurate, even though the exact solution is unknown. In this study, by introducing expanded control variates (ECV) formulation, ACVAT is improved and the capabilities of the method are also extended for efficient reliability mesh convergence analysis of FEM-based reliability problems. In the present study, the FEM-based reliability analyses of four practical engineering problems are investigated by this method and the corresponding results are compared with accurate results obtained by analytical solutions for two problems. The results confirm that the proposed approach not only handles the mesh refinement progress with the required accuracy, but it also reduces considerably the computational cost of FEM-based reliability problems.

关键词: finite element     reliability mesh convergence analysis     expanded control variates    

A novel composite coating mesh film for oil-water separation

Futao QIN, Zhijia YU, Xinhui FANG, Xinghua LIU, Xiangyu SUN

《化学科学与工程前沿(英文)》 2009年 第3卷 第1期   页码 112-118 doi: 10.1007/s11705-009-0149-x

摘要: Polytetrafluoroethylene-polyphenylene sulfide composite coating mesh film was successfully prepared by a simple layered transitional spray-plasticizing method on a stainless steel mesh. It shows super-hydrophobic and super-oleophilic properties. The contact angle of this mesh film is 156.3° for water, and close to 0° for diesel oil and kerosene. The contact angle hysteresis of water on the mesh film is 4.3°. The adhesive force between the film and substrate is grade 0, the flexibility is 1 mm and the pencil hardness is 4H. An oil-water separation test was carried out for oil-contaminated water in a six-stage super-hydrophobic film separator. The oil removal rate can reach about 99%.

关键词: super-hydrophobic     super-oleophilic     composite coating     mesh film     separation of oil and water    

Comparison of indices for stiffness performance evaluation

Giuseppe CARBONE, Marco CECCARELLI,

《机械工程前沿(英文)》 2010年 第5卷 第3期   页码 270-278 doi: 10.1007/s11465-010-0023-z

摘要: This paper addresses the problem of a numerical evaluation of the stiffness performance for multibody robotic systems. An overview is presented with basic formulation concerning indices that are proposed in literature. New indices are also outlined. Stiffness indices are computed and compared for a case study. Results are used for comparing the effectiveness of the stiffness indices. The main goal is to propose a performance index describing synthetically the elastostatic response of a multibody robotic system and also for design purposes.

关键词: robotics     stiffness     performance indices    

buoyant-thermocapillary flow along with rising liquid film on the surface of a horizontal metallic mesh

Manuel J. GOMES, Ning MEI

《能源前沿(英文)》 2020年 第14卷 第1期   页码 114-126 doi: 10.1007/s11708-017-0483-5

摘要: Temperature distribution and variation with time has been considered in the analysis of the influences of the initial level of immersion of a horizontal metallic mesh tube in the liquid on combined buoyant and thermo-capillary flow. The combined flow occurs along with the rising liquid film flow on the surface of a horizontal metallic mesh tube. Three different levels of immersion of the metallic mesh tube in the liquid have been tested. Experiments of 60 min in duration have been performed using a heating metallic tube with a diameter of 25 mm and a length of 110 mm, sealed outside with a metallic mesh of 178 mm by 178 mm, and distilled water. These reveal two distinct flow patterns. Thermocouples and infrared thermal imager are utilized to measure the temperature. The level of the liquid free surface relative to the lower edge of the tube is measured as angle . The results show that for a smaller angle, or a low level of immersion, with a relatively low heating power, it is possible to near fully combine the upwards buoyant flow with the rising liquid film flow. In this case, the liquid is heated only in the vicinity of the tube, while the liquid away from the flow region experiences small changes in temperature and the system approaches steady conditions. For larger angles, or higher levels of immersion, a different flow pattern is noticed on the liquid free surface and identified as the thermo-capillary (Marangoni) flow. The rising liquid film is also present. The higher levels of immersion cause a high temperature gradient in the liquid free surface region and promote thermal stratification; therefore the system could not approach steady conditions.

关键词: rising liquid film     combined flow     thermo-capillary flow     buoyant flow     metallic mesh tube     horizontal tube    

New nonlinear stiffness actuator with predefined torque‒deflection profile

《机械工程前沿(英文)》 2023年 第18卷 第1期 doi: 10.1007/s11465-022-0721-3

摘要: A nonlinear stiffness actuator (NSA) could achieve high torque/force resolution in low stiffness range and high bandwidth in high stiffness range, both of which are beneficial for physical interaction between a robot and the environment. Currently, most of NSAs are complex and hardly used for engineering. In this paper, oriented to engineering applications, a new simple NSA was proposed, mainly including leaf springs and especially designed cams, which could perform a predefined relationship between torque and deflection. The new NSA has a compact structure, and it is lightweight, both of which are also beneficial for its practical application. An analytical methodology that maps the predefined relationship between torque and deflection to the profile of the cam was developed. The optimal parameters of the structure were given by analyzing the weight of the NSA and the mechanic characteristic of the leaf spring. Though sliding friction force is inevitable because no rollers were used in the cam-based mechanism, the sliding displacement between the cam and the leaf spring is very small, and consumption of sliding friction force is very low. Simulations of different torque‒deflection profiles were carried out to verify the accuracy and applicability of performing predefined torque‒deflection profiles. Three kinds of prototype experiments, including verification experiment of the predefined torque‒deflection profile, torque tracking experiment, and position tracking experiment under different loads, were conducted. The results prove the accuracy of performing the predefined torque‒deflection profile, the tracking performance, and the interactive performance of the new NSA.

关键词: compliant actuator     nonlinear stiffness actuator     nonlinear spring     predefined torque−deflection profile    

Mechanical design, modeling, and identification for a novel antagonistic variable stiffness dexterous

《机械工程前沿(英文)》 2022年 第17卷 第3期 doi: 10.1007/s11465-022-0691-5

摘要: This study traces the development of dexterous hand research and proposes a novel antagonistic variable stiffness dexterous finger mechanism to improve the safety of dexterous hand in unpredictable environments, such as unstructured or man-made operational errors through comprehensive consideration of cost, accuracy, manufacturing, and application. Based on the concept of mechanical passive compliance, which is widely implemented in robots for interactions, a finger is dedicated to improving mechanical robustness. The finger mechanism not only achieves passive compliance against physical impacts, but also implements the variable stiffness actuator principle in a compact finger without adding supererogatory actuators. It achieves finger stiffness adjustability according to the biologically inspired stiffness variation principle of discarding some mobilities to adjust stiffness. The mechanical design of the finger and its stiffness adjusting methods are elaborated. The stiffness characteristics of the finger joint and the actuation unit are analyzed. Experimental results of the finger joint stiffness identification and finger impact tests under different finger stiffness presets are provided to verify the validity of the model. Fingers have been experimentally proven to be robust against physical impacts. Moreover, the experimental part verifies that fingers have good power, grasping, and manipulation performance.

关键词: multifingered hand     mechanism design     robot safety     variable stiffness actuator    

Mechanical performance analysis and stiffness test of a new type of suspension bridge

《结构与土木工程前沿(英文)》 2021年 第15卷 第5期   页码 1160-1180 doi: 10.1007/s11709-021-0760-6

摘要: A new type of suspension bridge is proposed based on the gravity stiffness principle. Compared with a conventional suspension bridge, the proposed bridge adds rigid webs and cross braces. The rigid webs connect the main cable and main girder to form a truss that can improve the bending stiffness of the bridge. The cross braces connect the main cables to form a closed space truss structure that can improve the torsional stiffness of the bridge. The rigid webs and cross braces are installed after the construction of a conventional suspension bridge is completed to resist different loads with different structural forms. A new type of railway suspension bridge with a span of 340 m and a highway suspension bridge with a span of 1020 m were designed and analysed using the finite element method. The stress, deflection of the girders, unbalanced forces of the main towers, and natural frequencies were compared with those of conventional suspension bridges. A stiffness test was carried out on the new type of suspension bridge with a small span, and the results were compared with those for a conventional bridge. The results showed that the new suspension bridge had a better performance than the conventional suspension bridge.

关键词: new type of suspension bridge     stiffness test     mechanical performance     railway bridge     space truss    

Investigating the influence of delamination on the stiffness of composite pipes under compressive transverse

Sattar MALEKI, Roham RAFIEE, Abolfazl HASANNIA, Mohammad Reza HABIBAGAHI

《结构与土木工程前沿(英文)》 2019年 第13卷 第6期   页码 1316-1323 doi: 10.1007/s11709-019-0555-1

摘要: The effect of delamination on the stiffness reduction of composite pipes is studied in this research. The stiffness test of filament wound composite pipes is simulated using cohesive zone method. The modeling is accomplished to study the effect of the geometrical parameters including delamination size and its position with respect to loading direction on stiffness of the composite pipes. At first, finite element results for stiffness test of a perfect pipe without delamination are validated with the experimental results according to ASTM D2412. It is seen that the finite element results agree well with experimental results. Then the finite element model is developed for composite pips with delaminated areas with different primary shapes. Thus, the effect of the size of delaminated region on longitudinal and tangential directions and also its orientation with respect to loading direction on delamination propagation and stiffness reduction of the pipes is assessed.

关键词: delamination     composite pipes     stiffness test     cohesive zone method    

A numerical framework for underground structures in layered ground under inclined P-SV waves using stiffness

《结构与土木工程前沿(英文)》 2023年 第17卷 第1期   页码 10-24 doi: 10.1007/s11709-022-0904-3

摘要: A numerical framework was proposed for the seismic analysis of underground structures in layered ground under inclined P-SV waves. The free-field responses are first obtained using the stiffness matrix method based on plane-wave assumptions. Then, the domain reduction method was employed to reproduce the wavefield in the numerical model of the soil–structure system. The proposed numerical framework was verified by providing comparisons with analytical solutions for cases involving free-field responses of homogeneous ground, layered ground, and pressure-dependent heterogeneous ground, as well as for an example of a soil–structure interaction simulation. Compared with the viscous and viscous-spring boundary methods adopted in previous studies, the proposed framework exhibits the advantage of incorporating oblique incident waves in a nonlinear heterogeneous ground. Numerical results show that SV-waves are more destructive to underground structures than P-waves, and the responses of underground structures are significantly affected by the incident angles.

关键词: underground structures     seismic response     stiffness matrix method     domain reduction method     P-SV waves    

Gear fault diagnosis using gear meshing stiffness identified by gearbox housing vibration signals

《机械工程前沿(英文)》 2022年 第17卷 第4期 doi: 10.1007/s11465-022-0713-3

摘要: Gearbox fault diagnosis based on vibration sensing has drawn much attention for a long time. For highly integrated complicated mechanical systems, the intercoupling of structure transfer paths results in a great reduction or even change of signal characteristics during the process of original vibration transmission. Therefore, using gearbox housing vibration signal to identify gear meshing excitation signal is of great significance to eliminate the influence of structure transfer paths, but accompanied by huge scientific challenges. This paper establishes an analytical mathematical description of the whole transfer process from gear meshing excitation to housing vibration. The gear meshing stiffness (GMS) identification approach is proposed by using housing vibration signals for two stages of inversion based on the mathematical description. Specifically, the linear system equations of transfer path analysis are first inverted to identify the bearing dynamic forces. Then the dynamic differential equations are inverted to identify the GMS. Numerical simulation and experimental results demonstrate the proposed method can realize gear fault diagnosis better than the original housing vibration signal and has the potential to be generalized to other speeds and loads. Some interesting properties are discovered in the identified GMS spectra, and the results also validate the rationality of using meshing stiffness to describe the actual gear meshing process. The identified GMS has a clear physical meaning and is thus very useful for fault diagnosis of the complicated equipment.

关键词: gearbox fault diagnosis     meshing stiffness     identification     transfer path     signal processing    

标题 作者 时间 类型 操作

Mesh relationship modeling and dynamic characteristic analysis of external spur gears with gear wear

期刊论文

Mechanical design and analysis of a novel variable stiffness actuator with symmetrical pivot adjustment

期刊论文

基于多跳双向认证的802.16Mesh网络SA管理机制

王兴建,胡爱群,黄玉划

期刊论文

Numerical studies of dynamic behavior of liquid film on single-layer wire mesh with different wettabilities

期刊论文

Fabrication of a superhydrophilic/underwater superoleophobic stainless steel mesh for oil/water separation

期刊论文

Reliability mesh convergence analysis by introducing expanded control variates

Alireza GHAVIDEL, Mohsen RASHKI, Hamed GHOHANI ARAB, Mehdi AZHDARY MOGHADDAM

期刊论文

A novel composite coating mesh film for oil-water separation

Futao QIN, Zhijia YU, Xinhui FANG, Xinghua LIU, Xiangyu SUN

期刊论文

Comparison of indices for stiffness performance evaluation

Giuseppe CARBONE, Marco CECCARELLI,

期刊论文

buoyant-thermocapillary flow along with rising liquid film on the surface of a horizontal metallic mesh

Manuel J. GOMES, Ning MEI

期刊论文

New nonlinear stiffness actuator with predefined torque‒deflection profile

期刊论文

Mechanical design, modeling, and identification for a novel antagonistic variable stiffness dexterous

期刊论文

Mechanical performance analysis and stiffness test of a new type of suspension bridge

期刊论文

Investigating the influence of delamination on the stiffness of composite pipes under compressive transverse

Sattar MALEKI, Roham RAFIEE, Abolfazl HASANNIA, Mohammad Reza HABIBAGAHI

期刊论文

A numerical framework for underground structures in layered ground under inclined P-SV waves using stiffness

期刊论文

Gear fault diagnosis using gear meshing stiffness identified by gearbox housing vibration signals

期刊论文